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1 Introduction

Black holes in dimensions greater than four have recently drawn considerable interest [1–3].

They not only provide testing ground of String theory (for example counting of microstates

to obtain the entropy) but also are interesting in their own right as they aid the greater

understanding of General Relativity. In this note we use the AdS/CFT correspondence

to study black holes in six dimensional space-times that asymptote to a Scherk-Schwarz

compactification of AdS6. Although it appears to be difficult to directly construct black

hole backgrounds in these geometries, the AdS/CFT correspondence identifies finite energy

configurations of the ‘deconfined gluon plasma’ fluid of the dual boundary field theory with

these localized black holes permitting a detailed study of the spectrum of black holes and

their thermodynamic properties in appropriate limits [4].

In more detail, the dual boundary description of gravity on a background that asymp-

totes to a Scherk-Schwarz compactification of AdS6 is given by the Scherk-Schwarz com-

pactification of a 4 + 1 dimensional CFT. The effective long distance description of this

system is given by the 3 + 1 fluid dynamics equations (the relativistic Navier-Stokes equa-

tions) with the appropriate equation of state and dissipative parameters, all of which are
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directly known from gravity. In an appropriate limit, rotating bulk black holes are dual to

localized rotating lumps of the boundary fluid that solve the Navier-Stokes equations. Such

fluid configurations were investigated in [5] (see [6] for a prior discussion on equilibrium

fluid configurations and analysis of their stability in relation to the study of black holes).

The authors of [5] constructed solutions of fluid dynamics with the topology of a ball and

other solutions with the topology of a solid torus. They argued that, under the AdS/CFT

correspondence described above, these solutions are dual to black objects whose horizons

are topologically S4 and S3 ⊗ S1 respectively, i.e. black holes and black rings.

The authors of [5], however, left open the possibility of the existence of other topolog-

ically distinct solutions of fluid dynamics which would be dual to black holes with distinct

horizon topologies. They also did not study the thermodynamic properties of the solutions

they have constructed. Finally, the solutions of [5], while explicit, are presented in terms

of a function defined by a definite integral that appears difficult to control analytically.

In this paper we continue (and to an extent complete) the analysis of [5] in three dif-

ferent ways. First we perform a thorough numerical scan to demonstrate that the rotating

fluid solutions presented in [5] are the only stationary rotating solutions of the relevant

Navier-Stokes equations. Second we determine the thermodynamic properties and the

phase diagram of the solutions constructed in [5]. Finally we also find a particular limit

(the ‘thin ring’ limit) in which the integrals of [5] may be explicitly evaluated. All thermo-

dynamic properties may be evaluated analytically in this limit, allowing a better intuitive

understanding of the properties of these solutions, and providing checks on our (numerical)

determination of the thermodynamic properties of the general solution.

The thermodynamic properties of the ball and ring solutions of [5] turn out to be very

similar to the properties of the analogous solutions in one lower dimension (discussed in

detail in [5]). In figure 1 we present a plot of the entropy versus the angular momentum

of the relevant solutions, at a fixed value of the energy. As is apparent from figure 1 we

find at least one rotating fluid solution for every value of the angular momentum. However

in a particular window of angular momentum - in the range (LB , LC) - there exist three

solutions which have the same energy and angular momentum. These three solutions may

be thought of as a ball a thick ring and a thin ring respectively of rotating fluid. The ball

solution is entropically dominant for L < LP while the thin ring dominates for L > LP . At

angular momentum LP (which lies in the range (LB , LC)) the system (in the microcanonical

ensemble) consequently undergoes a ‘first order phase transition’ from the ball to the ring.

It follows that the dual gravitational system must exhibit a dual phase transition from a

black hole to a black ring at the same angular mumomentum.

In section 6 we explain that the phase diagram depicted in figure 1 has some similarities,

but several qualitative points of difference from a conjectured phase diagram for the solution

space of rotating black holes and black rings in 6 dimensional flat spacetime. This suggests

that the properties of black holes and black rings in 6 dimensional AdS space are rather

different from those of the corresponding objects in flat six dimensional space. This is a bit

of a surprise, as black holes and rings in Scherk-Schwarz compactified AdS5 appear to have

properties that are qualitatively similar to their flat space counterparts [3, 5]. The rest of

this paper is organized as follows. In section 2 below we review the results of [5]. In section 3
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Figure 1. Schematic plot of the phase diagram for the various plasma configurations which by

AdS/CFT correspondence gives the phase structure of blackholes with various horizon topologies

in Scherk-Schwarz compactified AdS6.

we describe the numerical scan that has convinced us that there exist no further solutions

to the equations of [5] in addition to the ball and ring solutions presented in that paper. In

section 4 we analytically determine the ring solution and its thermodynamic properties in

the ‘thin ring’ limit. We also study the properties of the ball and ring solutions at the point

in moduli space where they meet; the point at which the ball just squeeze off into a ring.

In section 5 we present a thorough numerical analysis of the thermodynamic properties of

the ball and ring solutions, and the resultant phase diagram of the system. in section 6

we compare this phase diagram to the conjectured phase diagram for spinning black holes

and black rings in flat space, presented by Emparan and collaborators [1].

2 Review

Here we briefly summarize the results of [5] as we intend to study the thermodynamic

properties of the solutions already presented there. We also borrow our notations and

conventions from therein. For the study of 3 + 1 dimensional plasma configurations we

work with the coordinates (t, r, φ, z) and the metric we consider is,

ds2 = −dt2 + dr2 + r2dφ2 + dz2. (2.1)

Considering the axis of rotation (whenever applicable) to be the z-axis we assume that the

surface of the plasma configuration is given by the surface z − h(r) = 0, with h(r) being a

height function. The equation of state for the fluid under consideration is,

F = V
(

ρ0 − λT 5
)

, (2.2)

where F and T are the free energy and temperature respectively, ρ0 denotes the vacuum

energy density and λ being some arbitrary constant (note that λ here is not ’t Hooft

coupling). In terms of the intensive variables the equation of state can be written as,

P =
ρ − 5ρ0

4
, s = 5λ

1

5

(

ρ − ρ0

4

)
4

5

, (2.3)
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where P , s and ρ are respectively the pressure, entropy density and energy density.

We now consider the energy momentum tensor as worked out in [5]. In a frame where

the four velocity is uµ = γ(1, 0, ω, 0), the perfect fluid stress tensor and the surface stress

tensor are respectively given by,

T µν
perfect =











γ2
(

Pr2ω2 + ρ
)

0 ωγ2(P + ρ) 0

0 P 0 0

ωγ2(P + ρ) 0
γ2(Pr2ω2+ρ)

r2 0

0 0 0 P











(2.4)

T µν
surface =

δ(z − h(r))σ
√

h′(r)2 + 1











h′(r)2 + 1 0 0 0

0 −1 0 −h′(r)

0 0 −h′(r)2+1
r2 0

0 −h′(r) 0 −h(r)2











(2.5)

where γ = (1 − ω2r2)−
1

2 , P is the local pressure of the fluid configuration and σ is the

surface tension . The hydrodynamic equations given by ∇µT µν = 0 reduces to,

∂P

∂r
− ω2r(ρ + P )√

1 − ω2r2
∓ 2σHh′(r)δ(z − h(r)) = 0, (2.6)

∂P

∂z
± 2σHδ(z − h(r)) = 0. (2.7)

where,

H = ∓
h′(r)

(

h′(r)2 + 1
)

+ rh′′(r)

2r (h′(r)2 + 1)3/2
(2.8)

the upper sign referring to the upper(z > 0) surface.

We do not consider the dissipative terms in the stress tensor because we are interested

in non-dissipative solutions. The dissipative part of the stress tensor vanishes on the

solutions constructed in [5] (those that are considered by us in this paper).

We define certain dimensionless variables as follows,

ω̃ =
σω

ρ0
, v = ωr, h̃(v) = ωh(r), (2.9)

where ω is the angular velocity of the fluid configuration.

Now integrating (2.6) and (2.7) in the bulk interior away from the outer or inner surface

(and also using the equation of state (2.3)) we have,

P = ρ0

(

k

(1 − v2)
5

2

− 1

)

(2.10)

where k is an integration constant depending on the bulk properties of the plasma fluid.

Again integrating (2.7) across an outer surface gives,

P = 2σH (2.11)
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For convenience we define two functions,

f(v) = 2k − 3
(

v2 + 2c
) (

1 − v2
)

3

2 , g(v) = 6ω̃v
(

1 − v2
)

3

2 . (2.12)

Now using (2.10) and (2.8) into (2.11) we obtain a second order differential equation for

the height function h̃(v). This equation can be integrated once to obtain,

dh̃

dv
=

−f(v)

(g(v)2 − f(v)2)
1

2

, (2.13)

which on further integration yields,

h̃(v) =

∫ v

vo

−f(x)

(g(x)2 − f(x)2)
1

2

dx. (2.14)

Here c is another constant determined by the surface properties of the fluid.

If there is an inner surface of the plasma configuration then it is also obtained by the

same procedure, but this time we have the opposite sign,

P = −2σH (2.15)

Again integrating (2.15) we obtain the height function of an inner surface, which is given by,

dh̃

dv
=

f(v)

(g(v)2 − f(v)2)
1

2

. (2.16)

Now let us consider the various stationary solutions presented in [5] one by one.

1. BALL: This is obtained when the derivative of the height function is 0 at v = 0 and

−∞ at the outer radius v = vo and the height function is monotonic in this interval

of interest. The first condition implies k = 3c, the second implies f(vo) = g(vo) and

the third implies k must always be greater than 1. We also compute the expressions

for energy, angular momentum and entropy. Energy (obtained from the time-time

component of the energy momentum tensor) is given by,

E =
4πσ3

ρ2
0ω̃

∫ vo

0
dv

(

h̃(v)v

(

k
(

4 + v2
)

(1 − v2)
7

2

+ 1

)

+ ω̃v
(

1 + h̃′(v)2
) 1

2

)

. (2.17)

Angular momentum is obtained from the tφ component of the energy momentum

tensor and is given by,

L =
20πkσ4

ρ3
0ω̃

4

∫ vo

0

v3h̃(v)dv

(1 − v2)
7

2

. (2.18)

Finally the Entropy is obtained from the expression of entropy density as in (2.3)

and is given by,

S =
20πλ

1

5 k
4

5 σ3

ρ
11

5

0 ω̃3

∫ vo

0

vh̃(v)dv

(1 − v2)
5

2

. (2.19)
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2. PINCHED BALL: This solution is topologically same as the ball. So the conditions

on the derivative of the height function is same as in the case of the ball. However the

important difference here is that the height function is not monotonic. This allows

for values of k less than 1 only. The reality condition for the height function demands

k to be greater than 0. Further restriction on the parameter space is provided by the

fact that the height function at v = 0 cannot exceed that at v = vo (where it is 0).

In other words h̃(0) must be greater than h̃(vo) = 0. This condition may be stated

as follows,

∆h̃ =

∫ v0

0

−f(x)dx

(g(v)2 − f(v)2)
1

2

≥ 0. (2.20)

The expressions for energy, angular momentum and entropy is exactly the same as in

the case of the ball solution, the only difference being that here we are dealing with

a different region of parameter space.

3. RING: In the case of the ring h̃′(v) must be ∞ and −∞ respectively at the inner

and outer radius vi and vo (rigorously these are the velocities at the inner and outer

radius of the ring). This sets the following conditions,

f(vo) = g(vo),

f(vi) = −g(vi).
(2.21)

Further the condition that h̃(v) at both ends vi and vo should be equal (both being

equal to 0), sets the following condition,

∆h̃ =

∫ v0

vi

−f(v)dv

(g(v)2 − f(v)2)
1

2

= 0. (2.22)

In the expressions for energy, angular momentum and entropy the lower limit of the

integral gets modified for the ring and we have,

E =
4πσ3

ρ2
0ω̃

∫ vo

vi

dv

(

h̃(v)v

(

k
(

4 + v2
)

(1 − v2)
7

2

+ 1

)

+ ω̃v
(

1 + h̃′(v)2
)

1

2

)

,

L =
20πkσ4

ρ3
0ω̃

4

∫ vo

vi

v3h̃(v)dv

(1 − v2)
7

2

,

S =
20πλ

1

5 k
4

5 σ3

ρ
11

5

0 ω̃3

∫ vo

vi

vh̃(v)dv

(1 − v2)
5

2

.

(2.23)

For convenience we define the following dimensionless quantities,

Ẽ =
ρ2
0E

4πσ3
, L̃ =

ρ3
0L

20πσ4
, S̃ =

ρ
11

5

0 S

20πλ
1

5 σ3
. (2.24)

We shall use these quantities for our later analysis.
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3 Existence of other possible configurations

Besides the ball, pinched ball and the ring solutions discussed in section 2 we can have the

following topologies for the plasma configuration

• Hollow ball - a ball with a ball scooped out from inside it.

• Hollow ring - a ring with a ring scooped out from within.

• Torridally hollow ball - a ball with a ring cut out from inside.

The existence of the Hollow ball was already ruled out in [5]. Thefore we consider the

possibility of the existence of ring-like inner surface of a configuration.

If a ring is to exist as an inner surface then instead of (2.21), it should satisfy the

following condition,

f(vo) = −g(vo),

f(vi) = g(vi).
(3.1)

The condition (2.22) remains unchanged. We considered k, vi and vo as the parameters of

the ring. Actually there should be two parameters. However the relation (2.22) could not

be easily used to express k in terms of the other parameters. Then we numerically scanned

the three dimensional parameter space from 0 to 1 in all directions (note that although 1

is not the upper limit of k, for the other two parameters it is). All the parameters were

varied by an interval of 0.01. With these values of the parameters we evaluated ∆h̃. We

found (for vi 6= vo) ∆h̃ was negative (except when vi was very close to zero and vo was very

close to one-when the numerical computations were no longer reliable). This eliminates

(up to numerical accuracies of the scan) the possibility of the existence of a ring like inner

surface both inside a ball as well as a ring.

4 Analytical results

In this section we study the solutions presented in [5] in certain analytically tractable limits.

4.1 The thin ring limit

It was possible to obtain an analytical solution of the hydrodynamic equations in the thin

ring limit (i.e. (vo − vi) is very small) as we shall discuss in this subsection. Let us define

the quantities,

a =
vo + vi

2
; αa =

vo − vi

2
. (4.1)

It is sometimes convenient to choose a, α as the two parameters in the problem. The thin

ring limit then corresponds to choosing α to be an infinitesimal parameter. In terms of a, α

the equations (2.21) and (2.22) that constrained the parameter space of the ring solution

– 7 –
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may be written as,

f(a(1 + α)) = g(a(1 + α)), (4.2)

f(a(1 − α)) = −g(a(1 − α)), (4.3)
∫ a(1−α)

a(1+α)

f(v)dv

(g(v)2 − f(v)2)
1

2

= 0. (4.4)

These three equations may be used to obtain k, ω̃, c in terms of a, α.

Now, in order to satisfy these equations, let us start with the ansatz:

f(a + x) =
x

aα
g(a + x) (4.5)

This form of f(v), clearly satisfies the above conditions (4.2), (4.3), (4.4), and leads to

the conditions:

f(a) = 0 (4.6)

aαf ′(a) = g(a) (4.7)

1

2
(aα)f ′′(a) = g′(a) (4.8)

Similar conditions on the higher derivatives cannot be imposed since we have only 3 free

parameters. To leading order in α these 3 parameters are determined to be,

k =

(

1 − a2
)

7

2

1 − 6a2
+ O(α),

ω̃ =
5a3α

1 − 6a2
+ O(α2),

c =
20a4 − 7a2 + 2

6(1 − 6a2)
+ O(α).

(4.9)

To estimate the errors in this calculation we must note that the first term in f(a + x)

that does not match correctly is the term 1
2g(2)(a) x3

aα . This term does not contribute to

any change in the numerator of the integral, however, in the denominator it contributes a

deviation of O
(

x3/α
)

, which lends to an error of O
(

α2
)

overall.

Also under the small αa approximation the height function can be approximated as,

h̃(v) = h̃(x + a) =

∫ x

−αa

−f ′(a)xdx
(

g(a)2 − f ′(a)2x2
) 1

2

=
(

α2a2 − (v − a)2
)

1

2 ,

(4.10)

where we use g(a) = (αa)f ′(a).

– 8 –
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Now the angular momentum (L̃) energy (Ẽ) and entropy (S̃) in the small α limit is

given by,

L̃ =
k

ω̃4

∫ vo

vi

v3h(v)dv

(1 − v2)
7

2

≈
√

a2
(

1 − 6a2
)3

π

1250a8α2
(4.11)

S̃ =
k

4

5

ω̃3

∫ vo

vi

vh(v)dv

(1 − v2)
5

2

≈ −
√

a2
(

1 − 6a2
)2 (

a2 − 1
)

π

250a7 5

√

− (1−a2)7/2

6a2−1
α(a)

(4.12)

Ẽ =
1

ω̃3

∫ vo

vi

dv

(

vh(v)

(

(4 + v2)k

(1 − v2)
7

2

+ 1

)

+
ω̃vaα

h(v)

)

≈
√

a2
(

1 − 6a2
)2 (

a2 + 1
)

π

50a7α
(4.13)

The local temperature of the plasma is given by,

T =

(

ρ − ρ0

4λ

) 1

5

=

(

kρ0

λ

) 1

5

γ, (4.14)

where γ = 1√
(1−v2)

, v being the local velocity of the fluid.

Also the thermodynamic temperature of full plasma configuration is given by,

T =

(

∂E

∂S

)

L

=

(

∂Ẽ

∂S̃

)

L̃

1

5

(ρ0

λ

)
1

5

. (4.15)

Now using relations (4.11), (4.12) and (4.13) we obtain the temperature to leading

order in α as follows,

1

T
= β =

(

δS̃

δẼ

)

L̃

=
1

5k
1

5

(4.16)

so that temperature of the configuration is given by,

T = T
√

1 − v2. (4.17)

We can now use (4.13) to express α in terms of a and energy E,

α =

√
a2
(

1 − 6a2
)2 (

a2 + 1
)

π

50a7Ẽ
(4.18)

Substituting α from (4.18) into (4.11) and (4.12) we are able to express L̃ and S̃ in terms

of Ẽ and a. Thus we can now fix Ẽ and plot S̃ vs L̃ taking a to be a parameter. This plot

is shown in figure 2 and in figure 3 for different values of energy.

4.1.1 Validity of the thin ring approximation

Our conclusions about the thin ring is valid only when we simultaneously meet the following

conditions.

1. the thin ring limit is valid i.e. α ≪ 1

2. physical quantities like ω̃ and L̃ are not negative.

– 9 –
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Figure 2. Here we plot entropy (S̃) against angular momentum (L̃) for Ẽ = 10 (note that even

when the thin ring approximation is invalid for such low energies this plot agrees quite well with

the numerical plots presented in section5.

3. we are within the domain of validity of hydrodynamics σ
ρ0Rc

≪ 1. This physically

means that the radius of the thin ring considered (Rc) is much larger than σ
ρ0

, the

typical length scale at which the hydrodynamics assumption breaks down.

We now analyze the circumstances under which all of these conditions are simultaneously

fulfilled. In the following discussion we parameterize our ring solution by its mean velocity

a and its energy Ẽ.

The second condition listed above requires that a ≤ 1√
6

(see (4.9) (4.11)). The third

condition — the validity of the fluid dynamical approximation — imposes the more strin-

gent requirement a ≪ 1√
11

. Finally the condition that α ≪ 1 is met provided

(1 − 6a2)2

a6Ẽ
≪ 1.

It follows that our analysis is valid in every respect only if a ≪ 1 but a6Ẽ ≫ 1.

We conclude that the thin ring approximation described in this section is valid over

a large region of parameter space provided that the energy Ẽ is large. We illustrate this

point in figure 3. In figure 3 we plot the entropy versus the angular momentum of the

ring solutions at different values of Ẽ using the thin ring formulas (4.11), (4.12), (4.13),

and indicate the approximate region of validity of this approximation. As is apparent

from this figure, the domain of validity of the thin ring approximation increases with

increasing energy.

We note an intriguing property of the equations in the thin ring limit; they suggest a

universal upper bound of 1√
6

for the mean ring velocity. As a is taken to this upper bound

value the thickness of the ring αa goes to zero. Unfortunately- as we have seen above - this

phenomenon occurs outside the validity of the fluid dynamical approximation and so is not

reliable. Nonetheless it is natural to wonder whether an exact version of this phenomenon

is present for the true solutions of gravity.
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Figure 3. Here we again plot entropy (S̃) against angular momentum (L̃) for different fixed

energies (Ẽ = 3000, 5000, 6000, 7000) within the domain of validity of the thin ring approximation.

for all the plots the left end is the point where α is 0.1 and the right end is the point where the

hydrodynamics assumption starts breaking down.

4.1.2 Physical interpretation

As we have seen in the previous subsection, the conclusions that follow from an analysis

of the thin ring limit are valid - within the regime of fluid dynamics - only at small a. In

this regime the fluid is approximately non relativistic, and all the formulas of the previous

subsection may be derived in a much more elementary and physical fashion, as we will

now explain.

In the thin ring limit we can think of the solution as a spinning narrow tube in the

shape of a torus, parameterized by the two radius Rc (radius of the tube) and R (distance
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of the center of the tube from the center of the torus). We are now interested in the limit
Rc
R → 0. In this limit the plasmaring is a narrow tube that curves into a circle that is much

larger than its thickness. As a consequence it is possible to focus on a segment of this ring

that is large compared to Rc but small compared to R. To the zeroth approximation such a

segment may be regarded as a cylinder of radius Rc. A simple force balance (surface tension

versus pressure) on this cylinder tells us that the pressure of the fluid in this cylinder is

given by

P =
σ

Rc
(4.19)

Now the cylinder described above is not quite straight; it bends in the plane of the ring

and also rotates in the same plane. Consequently, the condition for equilibrium at next

order in an expansion of Rc/R require us to balance forces in the plane of the ring. This

is also easily achieved. The centripetal acceleration of rotation, on any given segment of

the ring, must be provided by the effective tension of the cylinder. This tension is given

by T = 2πRcσ − πR2
cP = πRcσ. A force balance then yields T = πR2

cR
2ρω2 so that

ω2 =
σ

ρRcR2
, (4.20)

Expressing this relation in terms of the quantities defined previously we obtain

ω̃ =
5a3α

1 − 4a2
≈ 5a3α, (4.21)

which agrees with (4.9) at leading order in a (we could not have expected our better

agreement from our nonrelativistic arguments; see below however for the relativistic gener-

alization). Now we are interested in the behavior of angular momentum L and entropy S

keeping energy E fixed in the limit Rc → 0. The energy expressed in terms of a and α up

to leading order is (we do not include the surface contribution because it is not expected

to contribute to the leading order),

E = ρ
(

2πR2
cR
)

+
1

2
ρ
(

2πR2
cR
) (

ω2R2
)

≈ π

50a6α
, (4.22)

which again agrees to our result in (4.13) up to leading order in a.

Similar agreements are obtained for angular momentum and entropy which are ob-

tained to be respectively,

L =

∫

ρdvωR2 ≈ π

1250a7α2
, (4.23)

and

S =
5λ1/5(ρ − ρ0)

4/5V

44/5
≈ π

250a6α
. (4.24)

Although we are never really able to go beyond small a within the validity of fluid dynamics,

it is of course true as a purely mathematical fact that a relativistic version of the force

balance presented in this subsection may be used to reproduce the exact formulas (to all

orders in a) of the thin ring approximation. In the rest of this subsection we describe how

that goes.
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Now for our case of the thin ring the height function is given by (as in (4.10)).

h(r) =
√

R2
c − (r − R)2. (4.25)

Using this expression for h(r) into (2.8) and (2.11) we obtain the pressure to be P =
σ(2r−R)

2rRc
. We now plug this back into (2.6) and consider the point z = 0, r = R. Then if we

write the resultant equation in terms of the previously defined parameters α, a we obtain,

ω̃ =
5a3α

1 − 6a2
, (4.26)

which agrees completely to (4.9) up to the leading order in α. Further using the equation

of state we can integrate (2.6) to obtain,

k =
(ρ − ρ0)

(

1 − v2
) 5

2

4ρ0
, (4.27)

k here being the integration constant. We can once again use the equation of state and

the expression of pressure obtained above in to this expression for k. Then if we express

it in terms of α, a we obtain an exact match with (4.9) up to leading order in α. Once the

expressions for ω̃ and k match up to leading order in α the matching of the expressions for

energy, entropy and angular momentum follow immediately.

4.1.3 Thin ring as an inner surface

We now investigate whether a thin ring solution may exist as a inner surface inside a outer

surface being a ball or a ring. If the thin ring is to exist as a inner surface the conditions

corresponding to (4.2) and (4.3) is changed to,

f(a(1 − α)) = g(a(1 − α)), (4.28)

and,

f(a(1 + α)) = −g(a(1 + α)), (4.29)

whereas the condition (4.4) remains unchanged (note the all important change in sign).

Note that the constant c that appears in the above equations is in general different

from the similar constant that will appear for the outer surface. However Since in our

argument bellow we never refer to the outer surface so we continue to use the notation c

for this integration constant determined by the surface properties.

As before we can expand (4.28) and (4.29) in terms of the parameter α which is small

by the thin ring assumption. Then we get,

g′(a) = −1

2
f ′′(a)αa, (4.30)

g(a) +
1

2
g′′(a)(αa)2 = −f ′(a)αa. (4.31)
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Also as before we have f(a) = 0. Solving the above three conditions for k, ω̃ and c we get

the following result,

k =

(

1 − a2
)5/2 ((

84α2 − 2
)

a6 +
(

6 − 75α2
)

a4 +
(

9α2 − 6
)

a2 + 2
)

12 (2α2 − 1) a6 + (26 − 30α2) a4 + (9α2 − 16) a2 + 2

ω̃ = −
10a3

(

a2 − 1
)2

α

12 (2α2 − 1) a6 + (26 − 30α2) a4 + (9α2 − 16) a2 + 2

c =
−40

(

6α2 − 1
)

a8 +
(

408α2 − 94
)

a6 +
(

72 − 195α2
)

a4 + 2
(

9α2 − 11
)

a2 + 4

6 (12 (2α2 − 1) a6 + (26 − 30α2) a4 + (9α2 − 16) a2 + 2)
.

(4.32)

We expand the expressions of k and ω̃ up to leading order in α to obtain,

k =

(

1 − a2
)7/2

1 − 6a2

ω̃ =
5a3α

6a2 − 1
.

(4.33)

Thus we see that if a > 1√
6
, ω̃ is positive but k is negative; on the other hand if a < 1√

6

(especially if a < 1√
11

where our hydrodynamic approximation is valid) k is positive but ω̃

is negative. Thus for a given α (or energy) there is no velocity a for which a solution with

a thin ring as a inner surface exists.

4.2 The pinched limit of the ring

As we have explained above, the fluid dynamical equations under study in this paper admit

two topologically distinct classes of solutions; solid balls and solid tori. The moduli space

of ball and ring solutions meet at a point which we call the pinched limit. In this limit the

inner radius of the ring goes to zero and the ring closes off into a ball. Approached from

the other side, the height function of the ball undergoes an extreme pinch (goes to zero at

the center) at this point, opening out into a ring. In this section we study the ring solution

in the neighborhood of this topological transition.

In the neighborhood of the pinch, i.e. when vi < v ≪ 1,

h̃′(v) =
6ω̃vi + 6(1 − k)vi(v − vi) + 3(1 − k)(v − vi)

2

√

36ω̃2(v − vi)2 + 72ω̃2(v − vi)vi

, (4.34)

where we have retained terms up to second order in both v − vi and vi. It is not difficult

to convince for small vi,

h̃′(v) =

√

vi

2

1√
v − vi

, when (v − vi) ≤ 2vi.

h̃′(v) =
vi

v − vi
, when 2vi ≤ (v − vi) ≤

(

2ω̃vi

(1 − k)

) 1

2

h̃′(v) =
(1 − k)

2ω̃
(v − vi), otherwise.

(4.35)
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(a) (b)

Figure 4. In (a) we plot h̃(v) (the plot at the side shows h̃(v) near v = vi) and in (b) we plot h̃′(v).

All the plots are for vo = 0.74 and the value of vi are 0.01, 0.001, 0, 0001, 10−14 as we go from top

to bottom.

Note in particular that when vi is set to zero

h̃(v) =
(1 − k)

4ω̃
v2. (4.36)

smoothly matching on the the ball in the limit of extreme pinching. In figure 4 we plot

the height function and its derivative at various values of vi. The transition from the ball

to the ring is continuous in configuration space - it is the analogue of a second order phase

transition. It would not be difficult to extract the ‘critical exponents of this transition

from the formulas presented in this paper. However it seems likely that the thin wall

approximation used to model the fluid boundary in this paper (see [4, 5] for more details)

is inadequate precisely in the strict limit vi → 0. At least naively we would expect the thin

wall approximation to be good only when vi ≫ ω̃.
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Figure 5. Allowed region of energy (x-axis) and angular momentum (y-axis) space for ordinary

ball solution.

(a) (b)

Figure 6. In (a) we show the allowed region of the vo (x-axis) and k (y-axis) space where the

pinched ball solution exists and in (b) we show the corresponding allowed region of energy (x-axis)

and angular momentum (y-axis) space for pinched ball solution.

5 Numerical results

5.1 Thermodynamics of plasma balls

In section 2 we had presented the various solutions along with the expression for their

energy, angular momentum and entropy. For the ball-type solution we may take the

two independent parameters characterizing the solution to be energy(Ẽ) and angular

momentum(L̃). Now (2.17) and (2.18) express Ẽ and L̃ as functions of two auxiliary

parameters k and vo. Consequently by plotting Ẽ and L̃ for any given value of k and vo,

and by varying these parameters over their allowed region, we generate the region of the

Ẽ-L̃ space for which we have ball type solutions. For the ordinary ball we have k ≥ 1 and

vo ∈ [0, 1]. With these ranges for k1 and vo we plot the points generated for Ẽ and L̃ on

a diagram in figure 5. For the pinched ball solution k ∈ [0, 1] and so does vo. However

there is also the additional constraint (2.20). Taking this condition into account we plot

the allowed values of k and vo in figure 6(a). Then Using these allowed values we generate

the set of allowed points in the Ẽ-L̃ space and present it in a plot in figure 6(b). As is

clear from this figure, ball solutions exist in a certain region of the Ẽ , L̃ plane, and at no

value of energy and angular momentum do we have more than one ball solution.

1We considered k up to 7.5 only. With increase in the value of k the region near the energy(x)-axis

(i.e. lower values of angular momentum) gets filled; therefore the fact that an upper bound to angular

momentum exists at a fixed energy can be asserted with confidence.
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Figure 7. Here we present the Ẽ L̃ plane showing regions where the various solutions viz. the

ordinary ball, the pinched ball and the ring exists. In region A we have only a single ball solution.

In region B we have one ball (either ordinary or pinched) and two ring solutions. In region C we

have a single (thin) ring solution.

Using (2.19) we may now compute the entropy of the ball solutions as a function of

their energy and angular momentum. In figure 8 (see the left inset) we present a slice of

this plot at fixed energy Ẽ = 10 (for convenience we found a set of values of k and vo with

Ẽ = 10 ± 0.05 in order to generate this plot).

5.2 Thermodynamics of plasma rings

We have performed an analysis similar to the one described in the last subsection in order

to obtain the region of the ẼL̃ plane in which ring solutions exist. Once again solutions

exist only in a sub space of the ẼL̃ plane (for any given energy there is a minimum angular

momentum above which we have ring type solutions, see figure 7). There are also regions

in the ẼL̃ plane where there exist two distinct ring solutions (we refer to these as thin

and thick rings). This region of multiple solutions coincides exactly with the region of the

ẼL̃ plane in which a ball solutions (ordinary or pinched) exists overlaps with that of the

ring solution. Putting all this together with the results of the the previous section we see

that the ẼL̃ plane is divided into three distinct regions, A,B,C as shown in figure 7. In

region A we have only a single ball solution. In region B we have one ball and two ring

solutions. In region C we have a single (thin) ring solution.

In the region B of figure 7, the solution of maximum entropy will dominate the ther-

modynamics of the system. In order to see how this goes we once again fix Ẽ = 10 and

plot the entropy versus angular momentum of ring solutions in figure 8(see right inset). In

figure 8 we also superpose this plot with that of the ball solution to obtain the entropy

versus angular momentum plot of all solutions at constant energy. The shape of this final

plot is schematically depicted in figure 9(b) We see from this plot that the thick ring so-

lution is always entropically subdominant compared to the ball and the thin ring. As we

have explained in the introduction, the ball dominates at smaller angular momenta, while

the thin ring is entropically dominant at larger angular momenta.
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Figure 8. Plot showing S̃(y-axis) vs L̃(x-axis) for all the solutions together.

6 Comparison with the results in flat space

Above we have used the effective fluid dynamical description of the dynamics of the decon-

fined phase of the field theory dual to gravity on AdS6 compactified on a Scherk-Schwarz

circle to investigate the structure of large rotating black holes and black rings in this grav-

itational background. In this section we qualitatively compare our results with known

results and conjectures about the structure of black holes and black rings in flat six dimen-

sional space.

While rotating Myers Perry black holes have been analytically constructed in flat space

six dimensional space, exact black ring solutions have not yet been constructed. Nonetheless

Emparan and collaborators [1, 2] have presented physically motivated conjectures for the

structure of these solutions (see also [7] for a perturbative construction of a non uniform

black string in AdS6). In this section we will compare the moduli space of solutions

obtained in this paper with that conjectured in [1]. We will find some similarities but

also other differences. In figure 9(a) we present the relevant part of the conjectured phase

diagram (the area of the horizon vs the angular momentum) in asymptotically flat six

dimensional space. Here the dark line from A to E through B represents the well known

Myers-Perry black holes which is a class of rotating black holes with a spherical (S4-ordinary

ball) horizon topology. The thin line from C to D represents the black ring (with S3 ⊗ S1

topology) and the grey thick line from B to C is the conjectured smooth interpolation from

the ordinary ball to the ring type through the ‘pinched ball’ solutions, with the point C

being the point of extreme pinching. It is important to note however that the authors in [1]

make it clear that this part of the diagram is a guess.

In figure 9(b) we present qualitatively the phase diagram (Entropy vs angular momen-

tum at constant energy) obtained by us for asymptotically AdS6 spaces. Here the dark

line from A to F represents the rotating black hole with spherical topology which is the

analog of Myers-Perry black holes in asymptotically flat space. The two phase diagrams
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Figure 9. In (a) the area of the horizon has been plotted against angular momentum for black

hole topologies in six dimensional asymptotically flat space as in [1] (we present only that part of

the phase curve that is relevant for comparison with our result). In (b) we summarize our result

qualitatively.

have several points of difference. Firstly, at any given energy there exists a Myers-Perry

black holes at every value of angular momentum no matter how large. In contrast, at any

given energy the ball like fluid solutions determined in this paper exist up to only a finite

value of angular momentum. Also in figure 9(b) the segment F to B represents the pinched

ball configuration. Note that the ordinary ball smoothly continues into the pinched ball

at F. This is unlike the flat space predictions where there is a kink at the point where the

ordinary ball continues into a pinched ball (see point B in figure 9(a)).

This important difference feeds into the next point of distinction between figure 9(a)

and figure 9(b). As we have explained in our paper, the moduli space of balls ends, at large

angular momenta, as an extreme pinched ball. This ball smoothly turns into a thick ring

giving rise to the segment BC in figure 9(b) with point B representing the extreme pinched

ring. The natural continuation of figure 9(b) to flat space would be to push the point B

to infinity as a consequence of which the Myers Perry black holes would ‘pinch off’ only

at infinite angular momentum. This would result in a phase diagram with three solutions

at all angular momenta larger than a critical value, with the thick ring always entropically

subdominant, and approaching a pinch at infinite angular momenta. In such a scenario

the fact that the thin ring is entropically dominant compared to the Myers Perry black

holes is similar to that in figure 9(a). However it would still be qualitatively different from

figure 9(a). This perhaps suggest that despite similarities there are considerable difference

between asymptotically AdS and flat spaces. Such differences between AdS and flat space

in five dimensions regarding existence of Saturn type solutions have also been reported

in [12]. Alternatively the continuation of figure 9(b) to flat space could be such that the

ordinary ball solution is continued from the point F to infinite angular momentum such

that the thin ring at large angular momentum is always entropically dominant compared

to the ordinary ball. This diagram would be more close to figure 9(a). These diagrams
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would have a special point where the solution with ball topology would split up into two

lines. It would clearly be interesting to have a better understanding of this point.

7 Discussion

At strong coupling the AdS/CFT correspondence identifies the effectively classical large

N dynamics of an appropriate boundary theory with gravitational dynamics of the bulk

dual. As field theory dynamics reduces to fluid dynamics at long wavelengths, it follows as

a prediction of the AdS/CFT correspondence that the appropriate gravitational equations

reduce to the equations of boundary fluid dynamics in the long wavelength limit. For the

special case that the boundary theory is conformal (and the corresponding bulk solutions

asymptote to AdS space) this equivalence has recently been proved, and the corresponding

distinguished fluid dynamical system characterized in detail (see [8–11]).

In this paper we have exploited the duality between a 5 dimensional CFT on a Scherk-

Schwarz circle and gravity on an asymptotically Scherk-Schwarz AdS6 space. It follows

as a consequence of the results eluded to in the previous paragraph, that long wavelength

gravitational dynamics in this bulk background is simply dual to the dimensional reduction

of the distinguished equations of fluid dynamics, referred to above, apart from a constant

additive piece in the equation of state of the fluid (see [5] for details of this shift). This

additive shift implies that the pressure of our fluid (unlike a conformal fluid) goes to

zero at a particular finite energy density. This fact permits the existence of qualitatively

new solutions of the equations of fluid dynamics in these systems; finite blobs of (perhaps

rotating) fluids that are separated from the vacuum by a domain wall (see [5]). In this paper

we have investigated the moduli space of static solutions of this nature. These solutions

are expected to be dual to localized black holes in the 6 dimensional bulk background.

It may be possible - and would be very interesting - to directly construct the fluid

equations that are dual to long distance gravitational dynamics in our background. As

we have explained above, all bulk terms in these equations of motion are already known.

However the fluid configurations in this paper also have boundaries which play a crucial

role in their dynamics. In addition to bulk density and shear waves, such configurations will

support fluctuations localized at boundaries; these two types of fluctuations will interact.

All of these effects (which may be important in order to study dynamical perturbations

of the static solutions investigated in this paper) should directly follow from a thorough

investigation of the gravitational equations.

In this paper we have also compared the phase diagram of black holes and black

rings in Scherk-Schwarz compactified AdS6 with that in asymptotically flat space. The

most important difference between the two being the absence of black holes with spherical

horizon topology in Scherk-Schwarz compactified AdS6 (the one corresponding to Myers

Perry black holes in flat space) beyond a certain angular momentum. The portion of the

phase diagram which connects the ball type of solution to the ring is quite speculative in

asymptotic flat space. It could be like what we find here for asymptotically Scherk-Schwarz

AdS6 or something else. Any conclusive statement about this region in six dimensional

asymptotically flat space demands an intensive gravity calculation.
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The investigation of fluctuations about our solutions may be interesting for several

reasons. It is possible that some of the ring solutions in this paper have Plateau-Rayleigh

type instabilities (the instability for a tube of fluid to break up into a chain of droplets)

which would be dual to Gregory-Laflamme instabilities of the corresponding black rings

(see [6, 13–15] for more details). In more generality, it certainly seems interesting to

investigate the dynamical stability of all the solutions studied in this paper.

Finally we would like to draw attention to a curious fact that has emerged from our

analysis. Within the fluid dynamical approximation the ring solutions we have studied in

this paper have the fluid rotating at a finite universal speed - 1√
6

- in the extreme thin ring

limit (this is also the upper bound on the speed of rotation). It turns out that this extreme

limit cannot be reliably studied within the fluid approximation. Nonetheless the qualitative

feature of an upper bound to the velocity of rotating rings has also been discovered in flat

space [1],2 though in that case the upper bound velocity is 1√
3
. This makes us suspect that

the ‘speed limit’ uncovered in our analysis is not an artifact of the fluid approximation,

but is likely to persist in an exact analysis of black rings in AdS space. This is an issue

that calls for further study.
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